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The relative importance of environ- 
mental processes that affect the distribu- 
tion of organisms varies with the intensi- 
ty and frequency of the processes (1). 
Exposure to wave energy exerts an influ- 

of unusual value for the 
sons. First, Jamaican c 
among the best known in 
result, in particular, of th 
F. Goreau, his associatl 

Summary. Coral reefs of north Jamaica, normally sheltered, were 
aged by Hurricane Allen, the strongest Caribbean hurricane of this ce 
ate studies were made at Discovery Bay, where reef populations were 
in some detail. Data are presented to show how damage varied with tt 
orientation of the substratum and with the shape, size, and mechanic; 
exposed organisms. Data collected over succeeding weeks showed 
ences in the ability of organisms to heal and survive. 

ence on community composition of reef 
corals, and thus on coral reef structure 
(2), both directly and through its influ- 
ence on biological interactions. Reefs 
differ in their exposure to both routine 
wave energy and hurricanes (3, 4), but, 
because hurricanes occur irregularly and 
comparatively rarely, it is hard to assess 
their relative importance. While hurri- 
canes can cause violent disturbance to 
coral reefs with extreme short- (5) and 
long-term (3, 4, 6-9) effects, very little is 
known of their immediate consequences 
for previously investigated populations 
(10). In this article, we present data on 
the types and magnitudes of damage 
done by Hurricane Allen to the well- 
studied coral reefs of north Jamaica. 

We believe that these observations are 
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quent researchers at the 
Marine Laboratory of the 
the West Indies (11). Se 
these people were at the 
ing or soon after the st 
collected data comparable 
previously on routine pal 
cesses. Third, these fact 
with the -severity of Hu 
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created a natural experiment of Goreau's 
thesis (7) that structural and taxonomic 
differences between reefs on Jamaica's 
north and south coasts were due to dif- 
ferences in hurricane frequency. In the 

IIn last half-century, while Port Royal on the 
south coast experienced 11 'hurricanes, 

fS Discovery Bay on the north has seen 
only four; the last severe hurricane was 
in 1917 (12). 

^rd ' 'On 6 August 1980, Hurricane Allen, 
Lng the strongest storm recorded in the Ca- 

ribbean, passed close to the north coast 
of Jamaica (Fig. 1), severely damaging 

tis its reefs (13). Winds reached 285 kilome- 
el ters per hour at the center (14), and 

approximately 110 km/hr in Discovery 
les Bay, where waves over 12 meters (15) 

were seen breaking (Fig. 2) in water 15 m 
deep on the East Fore Reef (Fig. 1, 
location E). These waves, and the dis- 

following rea- lodged material that they carried, devas- 
,oral reefs are tated the shallow reefs in Discovery Bay 
t the world as a (Figs. 3 and 4). Dense stands of Acro- 
ie studies of T. pora palmata colonies (1 to 3 m high), 
es, and subse- which had dominated the reef between 0 

and a depth of 5 m, were leveled. The 
breaker zone and reef flat were trans- 

severely dam- formed from constructional reefs into a 
tntury. Immedi- gently sloping rubble rampart, which 
already known emerged here and there as islands where 
he position and none had been before. Physical distur- 
al properties of bance extended even to a depth of 50 m, 
i striking differ- where some platelike colonies of Agari- 

cia spp. were damaged, and the sediment 
normally covering their bases was tem- 
porarily washed away. Everywhere 

Discovery Bay damage was inflicted not only by violent- 
e University of ly moving water (16) but also-by the solid 
cond, many of objects that it dislodged: rolling corals 
laboratory dur- (Fig. 4, A and C), suspended fragments 
orm, and they (Fig. 4B), and scouring sand (Fig. 4D). 
to those taken The types and magnitudes of damage 

tterns and pro- varied with reef location, depth, and 
tors, combined topography and differed between taxa 
irricane Allen, according to their location, form, and 
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construction. We consider first the ef- 
fects of spatial factors and then describe 
the immediate impact on common organ- 
isms and their subsequent responses 
over the following 7 months. 

Spatial Patterns of Damage 

Damage was patchy on several scales, 
varying regionally around Jamaica, lo- 
cally between reefs and reef zones, and 
within zones. Not all patchiness can be 
easily explained, but a number of pat- 
terns emerge. The northeast coast of 
Jamaica, which was closest to the hurri- 

cane track (Fig. 1), suffered most heavily 
(17). West of this region, at Discovery 
Bay (Fig. 1), damage was more severe on 
the exposed East Fore Reef than on the 
West Fore Reef (Fig. 1, location C), 
where breaking waves were only half as 
high (15), and damage was much less 
severe in back reef areas sheltered by the 
reef crest. For example, wholesale tum- 
bling and shattering of head corals oc- 
curred locally at depths of 14 m on the 
East Fore Reef (Fig. 4A); similar devas- 
tation did not occur below a depth of 7 m 
on the West Fore Reef or at any depth 
within Discovery Bay. Similarly, in- 
creases over routine frequencies of death 

_25 --- 
- _ 

50- / () East Fore Reef, Discovery Bay ' 

t h. I 
Fig. 1. Track of Hurricane Allen on 5 and 6 August 1930. Inset shows coastline and submarine 
shelf in the vicinity of Discovery Bay, Jamaica. The 120-m depth contour, not shown, would be 
almost coincident with that for 50 m. Arrows approximate wave directions on the morning of 6 
August. Study sites referred to in text, from west to east: A, West Rio Bueno; B, Gorgo City; C, 
West Fore Reef including Arena, Pinnacle Two, Monitor, Long-Term Sampling, Dancing Lady, 
and Zingaro reefs, all within 0.4 km; D, West Fore Reef including Upper Buoy and Pinnacle 
One reefs, both within 0.1 km; E and F, East Fore Reef; and G, West Back Reef. Sketch 
profiles of three sites are shown at the bottom. 

and injury of arborescent gorgonians (18) 
were greater among exposed, shallow 
colonies at Gorgo City (Fig. 1, location 
B) than among those in the protected 
West Back Reef (Fig. 1, location G), 
where no significant increase in injury 
was seen (Table 1, rows 1 and 2; X2 
values for the increase in death and 
injury at Gorgo City are 149 and 33). 

At any single locality, dissipation of 
wave impact depended on aspects of the 
local reef profile, including depth, slope, 
and shelf width. Shallow fore-reef areas 
were generally more severely damaged 
than deep ones. We see this most direct- 
ly by comparing the same species on the 
same reefs at different depths. For exam- 
ple, head corals were more frequently 
toppled in sand channels in 10 m of water 
than in 14 m (Table 1, compare rows 5 
and 6; x2 for numbers toppled and not 
toppled after Hurricane Allen = 4.75, 
P < .05). Similarly, densities of the ur- 
chin Diadema antillarum were reduced 
more in shallow areas (Table 1, rows 13 
to 17). Similar decrease in damage with 
increasing depth is evident for all corals 
combined (Table 1, compare rows 8 and 
9). 

Sloping or level reef surfaces were 
more severely affected than vertical 
ones. At West Rio Bueno (Fig. 1, loca- 
tion A), where the reef is vertical below a 
depth of 8 m, little mortality was seen in 
marked quadrats of largely foliaceous 
corals at depths of 10, 15, and 20 m 
(Table 1, rows 10 to 12), in contrast to 
the toppling of the more massive head 
corals observed at comparable depths on 
the sloping West Fore Reef (Table 1, 
rows 5 to 7). A broad terrace dissipated 
more wave energy than a narrow one. In 
the southwest corner of the broad East 
Fore Reef (Fig. 1, location F) more A. 
palmata colonies remained erect at a 
depth of 3 m than on the narrow West 
Fore Reef where they were leveled. 

Distribution of damage also depended 
on small-scale position effects. At the 
West Fore Reef, massive corals in sand 
channels were more likely to be over- 
turned than those in adjacent reef lobes 
(Table 1, compare rows 5 and 6 with row 
7; X2 = 44, P < .001). Surviving large, 
massive corals provided shelter for more 
fragile organisms in their lee, but those 
that toppled left paths of damage (19). 
Corals seaward or shoreward of sand 
patches suffered abrasion, as evidenced 
by white paths of corals with stripped 
skeletons; some paths were as much as 
10 m long. On vertical walls in West Rio 
Bueno (Fig. 1, location A), damage by 
falling sand and skeletal debris was much 
greater below sand channels and chutes 
than that in the marked quadrats be- 
tween them. 



Damage to Sessile Taxa 

Within any zone, the amount and type 
of damage inflicted upon sessile organ- 
isms was greatly influenced by their 
shapes, sizes, and mechanical proper- 
ties. Damage to gorgonians, corals, and 
sponges ranged from partial to complete 
mortality (20) and was caused by abra- 
sion, burial, and the tearing or fracture of 
tissue and skeleton. The fate of detached 
colonies and fragments, and thus the 
ultimate consequences to populations, of 
Hurricane Allen, varied widely between 
taxa. 

Among gorgonians at Gorgo City, for 
example, 51 percent of colonies were 
killed by detachment, abrasion, and buri- 
al in sand or coral fragments. Many 
detached colonies died ultimately from 
abrasion or from transport onshore or 
over the drop-off at a depth of 50 m. Of 
surviving, attached colonies, 98 percent 
had lost polyps through abrasion or 
branch fracture (Table 1, rows I and 2). 

Differences in damage to different 
growth forms (7) were particularly strik- 
ing for corals, whose skeletal morpholo- 
gies include branching, foliaceousness, 
encrusting, and head forms. As reported 
previously (5), branching species were 
more susceptible to hurricane damage 
than were massive heads (Fig. 4B). In an 
extreme example, at a depth of 6 m on 

Fig. 2. Waves of Hurricane Allen breaking on East Fore Reef at Discovery Bay (Fig. 1, location 
E) at 0700, 6 August 1980. Wave heights were calculated to be 12 m; trees on shoreline are 15 m 
high. [Photograph by C.M.W.] 

Monitor Reef on the West Fore Reef 
(Fig. I, location C, and Fig. 3) the planar 
living areas of branching Acropora spp. 
were reduced by up to 99 percent (Table 
2, rows 1 to 3), whereas colonies of 
foliaceous and encrusting Agraricia 
agaricites were reduced by only 23 per- 
cent (Table 2, row 6), and massive Mon- 
tastrea annularis by only 9 percent (Ta- 
ble 2, row 12). Comparable patterns 
were evident elsewhere. At a depth of 14 

m on the West Fore Reef (Fig. 1, loca- 
tion C), A. cervicornis was reduced to 40 
percent of its 1977 coverage (21); virtual- 
ly all colonies were broken free, and 
horizontal transport of live fragments 
was recorded for distances of up to 6 m. 
In the same area, only 2 percent of the 
encrusting colonies of A. agaricites pres- 
ent after the storm were detached frag- 
ments, and total tissue recently lost for 
those remaining was only 3 percent (22). 

Table 1. Damage to organisms from Hurricane 
storm. Abbreviations: WFR. West Fore Reef: I 

Allen in relation to location on the reefs on the basis of survey data from before and after the 
EFR. East Fore Reef. 

Depth Be- Af- After! Refer- 
Row Organism Location Data type before ence 

Gorgonians 
1 Arborescent 7 Gorgo City Dead (%) 2 51 25.5 (18) 
2 Arborescent 7 Gorgo City Injured (%) 51 98 1.9 (18) 
3 Arborescent 1 West Back Reef Dead (%) 0 7 o (18) 
4 Arborescent I West Back Reef Injured (%) 95 76 0.8 (18) 

Corals 
5 Head (mainly Mon- 10 WFR, sand channel Standing (No.) 26 9 0.35 (41) 

tastrea annularis) 
6 Head (mainly M. 14 WFR, sand channel Standing (No.) 28 18 0.64 (41) 

annularis) 
7 Head (mainly M. 10, 14 WFR, reef lobe Standing (No.) 128 119 0.93 (41) 

annularis) 
8 All (mainly Acro- 4 WFR, reef lobe Cover (%) 51 12 0.24 (42) 

pora palmata) 
9 All (mainly foliaceous) 33 WFR, reef lobe Cover (%) 64 64 1.00 (42) 

10 All (mainly foliaceous) 10 West Rio Bueno wall Cover (%) 71 71 1.00 (43) 
11 All (mainly foliaceous) 15 West Rio Bueno wall Cover (%) 33 32 0.97 (43) 
12 All (mainly foliaceous) 20 West Rio Bueno wall Cover (%) 33 32 0.97 (43) 

Urchins 
13 Diadema antillarum 5 EFR No./m2 9.3 0.1 0.01 (44) 
14 D. antillarum 8 WFR, reef lobe No./m2 13.3 6.1 0.46 (44) 
15 D. antillarum 11 WFR, reef lobe No./m2 9.5 8.4 0.88 (44) 
16 D. antillarum 10 West Rio Bueno wall No./m2 6.3 3.8 0.60 (44) 
17 D. antillarum 20 West Rio Bueno wall No./m2 1.5 0.9 0.60 (44) 

Fish 
18 Eupomacentrus 8 WFR, reef lobe No./m2 0.7 0.9 1.29 (44) 

planifrons 
19 E. planifrons 11 WFR, reef lobe No./m2 0.7 0.8 1.14 (44) 
20 E. planifrons 18 WFR, reef lobe No./nm2 0.6 1.1 1.83 (44) 
21 E. planifrons 10 West Rio Bueno wall No./m2 0.6 0.5 1.20 (44) 
22 E. planifrons 20 West Rio Bueno wall No./m2 0.0 0.0 (44) 



Fig. 3. Photostation on Monitor Reef (Fig. 1, location C; depth 6 m) before (September 1978) 
and 19 days after Hurricane Allen (each photograph 1/4 m2). (A) Branching Acropora palmata 
(upper right), A. prolifera (lower left), and A. cervicornis (lower right) before Hurricane Allen. 
(B) The same quadrat after the hurricane showing total destruction of Acropora spp. (C) 
Acropora palmata overtopping massive Montastrea annularis before Hurricane Allen. (D) The 
same quadrat after the hurricane showing removal of A. palmata and lesions on M. annularis. 
[Photographs by J.E.N., J.W.P., and J.D.W.] 

Fitween the fates of branching and massive corals. (C) Detached and gouged head of SiderastreaReef at 
East Fore Reef (Fig. 

siderea at Gorgo City (Fig. 1, location B; depth 
14 m) where 60 per- 
cent of all massive 
coral heads were top- 

(B) West Fore Reef 
terrace at a depth of 7 
m on Monitor Reef 
'(Fig. 1, location C) 
showing contrast be- 

tween the fates of branching and massive corals. (C) Detached and gouged head of Siderastrea 
siderea at Gorgo City (Fig. 1, location B; depth 7 m). (D) Polyp loss on a gorgonian, Plexaurella 
sp., by abrasion and burial in sand at Gorgo City; note shattered calcareous skeleton of 
Millepora sp. encrusting branches in left foreground. [Photographs by J.D.W. (A), J.W.P. (B), 
and C.M.W. (C) and (D)] 
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Within broadly defined morphological 
classes, stouter forms were less likely to 
be injured. At depths of 6 m, the mas- 
sively branching A. palmata suffered 
less than the more delicately branching 
A. prolifera and A. cervicornis (Table 2, 
compare row I with rows 2 and 3). Thick 
plates of M. annularis at depths of 33 and 
40 m were hardly affected (Table 2, rows 
10 and 11), while some thin plates of 
Agaricia spp. at 50 m were broken or 
overturned. 

Damage to sponges also varied with 
shape. At a depth of 15 m on the East 
Fore Reef (Fig. 1, location E) nearly one 
half of all ropelike forms were broken off 
at the base, and many of those still 
attached were injured (Table 2, rows 13 
and 14). About a third of all other spong- 
es were seriously damaged (Table 2, row 
15). 

Colony size is another factor that af- 
fected partial mortality of corals. At 
Gorgo City (Fig. 1, location B), large 
encrusting colonies of A. agaricites were 
more likely to suffer some damage than 
were small ones, but injuries to small 
colonies were proportionately more se- 
vere in extent (Table 2, rows 7 to 9; G 
tests, P < .005). Similar patterns of rou- 
tine partial mortality before Hurricane 
Allen have been described for foliaceous 
corals on the wall at West Rio Bueno (23) 
(Fig. 1, location A). 

Injury to sessile organisms also varied 
with mechanical characteristics of the 
skeleton. Skeletons of corals are brittle, 
and branching corals were readily frag- 
mented. For example, before Hurricane 
Allen, A. cervicornis on the West Fore 
Reef was highly branched (24), but after- 
ward the broken organisms had, on the 
average, only one living side branch 
(Fig. 4B), and median live tissue length 
per fragment was only 15 percent of 1978 
values (Table 2, rows 4 and 5; differences 
between values before and after the hur- 
ricane were significant at P < .001, 
Mann-Whitney U test) (25). The advan- 
tage of flexibility was evident among 
gorgonian branches encrusted by the hy- 
drocoral Millepora spp. (26) at Gorgo 
City (Fig. 1, location B). Although gor- 
gonian branch fracture increased during 
Hurricane Allen (X2 = 40), branches of- 
ten proved more resilient than the over- 
lying rigid Millepora, which shattered 
and fell off, reexposing gorgonian axes 
(Fig. 4D). Many nonencrusting Mille- 
pora colonies were sheared off at the 
substratum. The fate of exposed massive 
sponges was also related to their texture; 
tough ones like Ircinia spp. often ap- 
peared unaffected, whereas almost all 
soft, crumbly forms, such as Neofibu- 
laria nolitangere, were destroyed. 

SCIENCE, VOL. 214 



Recovery of Surviving Sessile Organisms 

Among sessile organisms, there were 
marked differences in survivorship and 
repair after initial injury. Most Acropora 
spp. fragments that were alive 1 to 2 
weeks after Hurricane Allen died over 
the next few months. Of 254 fragments of 
A. cervicornis that were tagged within 9 
days after the hurricane at depths of 8 
and 14 m on the West Fore Reef, only 
four were living 5 months later (21). Of 
54 fragments of A. palmata tagged at 
depths of 2, 4, and 6 m on the West Fore 
Reef (Pinnacle Two Reef, Fig. 1, loca- 
tion C) within 4 weeks after the hurri- 
cane, only 28 percent were alive at 16 
weeks. In both cases, initial survivors 
had significantly larger areas of live tis- 
sue than those that died (Mann-Whitney 
U test, P < .001) (21, 24, 27). In massive 
and encrusting corals small lesions gen- 
erally healed, but large ones sometimes 
led to increased mortality (28). After 7 
months, many semierect and wedged 
gorgonian colonies were still alive. The 
degree of polyp regeneration varies 
widely between injured colonies. Many 
detached sponges also died, but ropy 
sponges lying on hard substrata were 
often able to reattach; at Upper Buoy on 
the West Fore Reef (Fig. 1, location D) 
and on the East Fore Reef (Fig. 1, loca- 
tion E) 75 percent of 52 of these ropy 
sponges and 73 percent of 26 had reat- 
tached within 3 weeks. Among nonropy 

sponges that remained attached, ex- 
posed sponges were more likely to have 
begun to repair injuries after 2 to 3 weeks 
than were cryptic sponges (43 percent of 
72 versus 24 percent of 17 at Upper Buoy 
and 35 percent of 153 versus 0 percent of 
29 at the East Fore Reef; x2 = 7.03, 
P < .005). 

Disturbance to Motile Organisms 

Motile organisms were also affected 
by Hurricane Allen. The impact of the 
hurricane on populations of the urchin 
Diadema antillarum and the damsel- 
fishes Eupomacentrus planifrons (three- 
spot) and Microspathodon chrysurus 
(yellowtail) is of potentially great impor- 
tance because these herbivores are 
known to have considerable influence on 
Discovery Bay coral reef communities 
(29). Densities of D. antillarum were 
significantly reduced in shallow water, 
especially in areas of extreme distur- 
bance, where the urchins were almost 
exterminated (Table 1, rows 13, 14, and 
16; Mann-Whitney U tests comparing 
values before and after the hurricane, 
P < .001). In deeper water, however, 
there were no significant reductions in 
density (Table 1, rows 15 and 17; Mann- 
Whitney U tests, P > .05). Densities of 
damselfishes, in contrast, were higher 
after the hurricane than they were in 
1977 (Table 1, rows 18 to 22; the increase 

is significant only for row 20, Mann- 
Whitney U test, P < .01), indicating that 
the hurricane was unlikely to have seri- 
ously reduced their numbers. However, 
the algal lawns defended by damselfishes 
were eliminated on the West Fore Reef 
in depths shallower than 10 m, and they 
were partially disrupted elsewhere. 

There were striking changes in dam- 
selfish behavior. Immediately following 
Hurricane Allen, these normally aggres- 
sive fishes showed no apparent territory 
or home range and often displayed sub- 
missive coloration. Territorial behavior 
resumed within 2 to 9 days, but there 
have been gradual shifts in the distribu- 
tions of damselfish species, presumably 
because of changes in reef structure (30). 

Other species also showed aberrant 
behavior in response to the hurricane. 
Schools of the striped parrot fish, Scarus 
croicensis, which normally feed heavily 
within E. planifrons territories, were un- 
usual in that they were smaller (5 to 25 
rather than 50 or more individuals), less 
stable in composition, and nonreproduc- 
tive. Reproductive behavior was first 
observed 12 days after Hurricane Allen, 
and typical schooling behavior was re- 
sumed within 3 weeks. In the following 
weeks, cryptic fishes were more often 
seen than before, planktivorous fishes 
foraged closer to the reef than usual, and 
large predatory fishes were unusually 
common (31). Normally cryptic brittle 
stars were seen wandering about in the 

Table 2. Damage from Hurricane Allen to sessile organisms in relation to morphology. Abbreviations: WFR, West Fore Reef; EFR, East Fore 
Reef. 

Row Structure type Depth Location Data type Before After before Refr- 

Branching corals 
I Acropora palmata 6 WFR Plan area (cm2) in 8 m2 15,700 2,370 0.15 (42) 
2 Acropora prolifera 6 WFR Plan area (cm2) in 8 m2 18,900 137 0.007 (42) 
3 Acropora cervicornis - 6 WFR Plan area (cm2) in 8 m2 2,630 99 0.038 (42) 
4 A. cervicornis 7 to 14 WFR Median Strahler 5 2 0.04 (24, 25) 

branching order 
5 A. cervicornis 7 to 14 WFR Tissue per fragment (cm) 117 18 0.15 (24, 25) 

Foliaceous and encrusting corals 
6 Agaricia agaricites 6 WFR Plan area (cm2) in 8 m2 1,060 797 0.77 (42) 

(foliaceous and encrusting) 
7 A. agaricites, < 5 cm2 7 Gorgo City Colonies with any dam- No data 17, 27 (45) 

(encrusting) age (%), > 20% 
8 A. agaricites, 5.1 to 10 7 Gorgo City Colonies with any dam- No data 42, 20 (45) 

cm2 (encrusting) age (%), > 20% 
9 A. agaricites, > 10 cm2 7 Gorgo City Colonies with any dam- No data 68, 3 (45) 

(encrusting) age (%), > 20% 
10 Montastrea annularis 33 WFR Cover (%) 51 50 0.98 (42) 

(foliaceous) 
11 M. annularis 40 WFR Cover (%) 55 55 1.00 (46) 

(foliaceous) 

Massive corals 
12 M. annularis 6 WFR Plan area (cm2) in 8 m2 4,400 4,030 0.91 (42) 

Sponges 
13 Ropy 15 EFR Injured (%) No data 67 (47) 
14 Ropy 15 EFR Stump only (%) No data 46 (47) 
15 Nonropy 15 EFR > 1/3 tissue lost (%) No data 31 (48) 
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open for a day or two after Hurricane 
Allen; they also showed evidence for 
increased partial mortality (arm loss) as a 
consequence of the storm (32). 

Demersal plankton responded quickly 
to major changes in bottom topography. 
Plankton samples collected over sand 
generally differ from those collected over 
reef areas (33). Ten days after Hurricane 
Allen, the abundance and composition of 
samples collected at night from a West 
Fore Reef sand channel that had become 
filled with rubble resembled those from 
reef areas. Over reef substrata, after the 
hurricane, samples collected at night 
showed little change when compared 
with samples collected in August 1979 at 
the same moon phase and at the same 
localities. Samples collected during the 
day, however, contained much higher 
numbers of predatory polychaetes after 
the hurricane; in 1979, only one poly- 
chaete was present in six samples, but 
after Hurricane Allen, there was an aver- 
age of 55.5 polychaetes in four samples. 

Succession 

Hurricane Allen exposed large 
amounts of substratum by abrasion, ero- 
sion, fracture, and death, thereby greatly 
increasing the surface available for re- 
cruitment and growth of sessile organ- 
isms. Even at depths of 16 m on the 
leeward side of the East Fore Reef, 
where little toppling occurred, the pro- 
portion of substratum assessed as bare 
or covered with filamentous algae in a 
100-m2 plot rose from 13 percent in 1976 
(34) to 37.5 percent 6 weeks after Hurri- 
cane Allen (X2 = 104, P < .001). Thus 
the hurricane set the stage for a major 
secondary successional sequence, suc- 
cession being defined here in the broad 
sense of a progressive change in the 
fauna and flora through time. 

Preliminary successional events in- 
cluded spectacular blooms of the green 
algae Trichosolen duchassaingii, which 
occurred in shallow water within a week 
(35). Within 2 weeks mean biomass 
reached 96 grams dry weight per square 
meter in an area of the west rear zone 
(Fig. 1, location G) on the basis of three 
1/16 m2 samples. By 1 month, however, 
this alga was dying, and in some areas it 
was succeeded by the red algae 
Crouania pleonospora and Liagora sp. 

Ultimately we expect that corals as a 
group will regain at least some of their 
former abundance on these reefs. But 
corals differ in their recruitment rates, 
growth rates, competitive abilities, and 
susceptibilities to predation. 

The almost total mortality of the slow- 
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ly sexually recruiting A. cervicornis (36), 
which is a good space competitor under 
the levels of wave stress routinely expe- 
rienced in Discovery Bay (24, 37), 
should for sometime favor the growth 
and recruitment of the hardier, longer- 
lived (M. annularis) and more fecund (A. 
agaricites) taxa (36) which survived the 
storm. Thus massive and encrusting/foli- 
aceous corals may become relatively 
more abundant in areas more frequently 
exposed to extreme wave energies. 

In summary, the effects of Hurricane 
Allen on the reef populations were im- 
pressive for their magnitude, speed, and 
patchiness. Organisms were unevenly af- 
fected, and the reefs are now a mosaic of 
areas that differ in the amount of open 
space and in the relative abundance of 
surviving species. Consequent differing 
opportunities for sexual and asexual col- 
onization may result in differing succes- 
sional communities (4), and such a se- 
quence may partly explain the heteroge- 
neity of mature reefs (38). Overnight, 
Hurricane Allen created patterns of 
distribution and abundance of orga- 
nisms that are strikingly different from 
preexisting states. Hurricane-induced 
changes in reef community composition 
will persist if such storms occur more 
frequently than the period of time re- 
quired for "recovery" (3, 8, 9). In places 
where severe storms are rare, like north 
Jamaica, there may exist a repetitive, 
though irregular, "pulse-reset" cycle of 
disturbance and recovery (39). Alterna- 
tively, rare hurricanes may cause pro- 
gressive shifts in community composi- 
tion, and "recovery" to prestorm states 
thus may not occur (40). Using compara- 
ble before-and-after data, we have de- 
scribed the immediate effects of a major 
hurricane on a Caribbean coral reef. The 
ultimate significance of disturbances of 
this magnitude and rarity will largely 
depend on the life histories and routine 
interactions of the surviving organisms. 
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In 1970, the Brazilian government an- 
nounced plans to integrate the Amazon 
region with the rest of the country. The 
forest-clad region was to be crisscrossed 
by a web of pioneer roads with the east- 
west Transamazon Highway serving as 
the backbone for the system. The 3300- 
kilometer Transamazon slices across the 
forest blanketing the southern inter- 
fluves of Amazonia, starting in Estreito 
on the Tocantins River and finishing in 
Cruzeiro do Sul near the Peruvian border 
(Fig. 1). The entire road was opened with 
bulldozers by 1975. Plans called for set- 
tling 1 million families on 100-hectare 
farms along the highway by 1980. 

The Transamazon Highway was de- 
signed to accomplish three main goals. 
First, this two-lane dirt road would pro- 
vide a safety valve for the poverty- 
stricken Northeast, a region with 30 mil- 
lion inhabitants increasing by 1 million a 
year. The 1970 drought that seared the 
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backlands of the region and uprooted 
some 3 million people triggered the gov- 
ernment's decision to build the Transam- 
azon. Second, the highway would help 
fill a demographic void in a region occu- 
pying half of Brazil's territory but con- 
taining only 4 percent of the nation's 
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would create access to mineral and tim- 
ber reserves that would fuel the coun- 
try's spectacular 10 percent annual eco- 
nomic growth. 

The Transamazon scheme has largely 
failed on all three counts. With the colo- 
nization phase of the highway now com- 
pleted, only 8000 families have been set- 
tled by INCRA (Instituto Nacional de 
Colonizaaio e Reforma Agraria), the 
federal agency responsible for adminis- 
tering the project. Even allowing for the 
estimated 1600 families that have settled 
spontaneously at the end of side roads 
and in forest reserves, the highway 
scheme has clearly not even come close 
to achieving the colonization target. 

Although three-quarters of the colo- 
nists were supposed to be northeastern- 
ers, only 40 percent of the settlers have 
come from that parched region. The hu- 
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Summary. The decade-old Transamazon Highway provides a useful stage for 
examining some of the major issues related to frontier conquest and the impact of 
pioneer settlement on one of the world's richest biomes. The highway project is an 
ambitious colonization scheme and the lessons that can be drawn from it, ranging 
from the environmental effects of stripping back the tree cover to the spread of 
diseases, will be useful in guiding development policy in other tropical regions. 
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since the highway was built, the popula- 
tion of the Northeast has grown by 6 
million. The Transamazon has thus ab- 
sorbed less than 1 percent of the region's 
population growth. The failure of the 
highway to relieve the demographic 
pressures and social strife in the North- 
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